
Intro

Ed Crowley

PHP and MySQL

for Dynamic Web Sites

Class Preparation

 If you haven’t already, download the sample scripts from:

http://www.larryullman.com/books/php-

and-mysql-for-dynamic-web-sites-

visual-quickpro-guide-4th-

edition/#downloads

 Unzip sample scripts on local computer…

 Log into your hostgator account…

http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/

Dynamic Web Sites Overview
 In many cases, can be described as applications rather than

sites.

 Can respond to different parameters (time of day, version of the
visitor’s Web browser)

 Have a “memory,” allowing for user registration and login, e-
commerce, and similar ...

 Almost always integrate HTML forms, allowing visitors to
perform searches, provide feedback...

 Often have interfaces where administrators can manage site’s
content.

 Easier to maintain, upgrade, and build upon than static sites.

 Don’t always rely on a database, though many do.

PHP Well Suited for Web Development

 Now, means “PHP: Hypertext Preprocessor.”

 Originally stood for “Personal Home Page.”

 PHP a “widely used general-purpose scripting language.

 Can be embedded into HTML.

 PHP is a scripting as opposed to a compiled language.

 Designed to write Web scripts, not stand-alone applications

(though that is possible).

 PHP runs on many operating systems, including:

 Windows

 Unix (and its many variants)

 Mac

 Tight integration with many databases

 Stable and portable

 Open source (no cost)

 Easier to learn than most alternatives.

PHP Server-side and Cross-Platform

Server-Side

 PHP hosted on a server.

 Server sends Web pages to requesting visitors (you, the

client, with your Web browser).

 When a visitor goes to a Web site written in PHP, the server

reads the PHP code, then processes it.

Server-side Technology of Choice.

 PHP code tells the server to send the appropriate data—

HTML code—to the Web browser, which treats the received

code as it would a standard HTML page.

 To the end user and the Web browser there is no perceptible

difference between what home.html and home.php may look

like

 But how that page’s content was created will be significantly

different.

MySQL world’s most popular open-

source database
 .

 By incorporating a database into a Web application, some of

the data generated by PHP can be retrieved from MySQL .

 Further moves a site’s content from static (hard-coded) to

dynamic .

MySQL Open-Source

Consists of several components

 MySQL server (mysqld which runs and manages the

databases)

 MySQL client (mysql, which gives you an interface to the

server)

 Utilities, such as PHPMyAdmin

Understanding Encoding
 The encoding you use in a file dictates what characters can be

represented.

 Some applications let you set the encoding in the preferences or
options area; others set the encoding when you save the file.

 To indicate the encoding to the Web browser, there’s the
corresponding meta tag:

<!DOCTYPE html>

<meta charset="UTF-8">

Note: New shorter HTML 5 encoding meta tag.

 charset=utf-8 says that UTF-8 encoding is being used

 8-bit Unicode Transformation Format.

Chapter One Goals

At the end of this unit, you will be able to:

 Create a basic PHP script

 Execute a PHP script

 Send data to a Web browser

 Write comments in PHP

 Demonstrate how to use variables

 Work with string variables, including concatenation and a

few string functions

Goals Two

At the end of this unit, you will be able to:

 Work with numeric variables, including arithmetic and

formatting

 Work with constants

 Know how PHP treats the two quotation mark types

differently

 Recognize common escape sequences

 Implement some basic debugging techniques

PHP Tags <?php ... ?>
 Anything written within these tags will be treated by the Web

server as PHP, meaning the PHP interpreter will process the
code.

 Any text outside of the PHP tags is immediately sent to the
Web browser as regular HTML.

 Because PHP is most often used to create content displayed in
the Web browser, the PHP tags are normally put somewhere
within the page’s body.

 Lets make a php page…

<php

phpinfo();

?>

.php File Type

 PHP files must have a proper extension.

 The extension tells the server to treat the script as a PHP

page.

 Use .html for standard HTML pages and .php for PHP files.

PHP Attributes

 PHP has built-in functions to send data to the Web browser.

 Most common: echo and print.

 Single or double quotation marks can be used.

 There is a distinction between the two.

 First quotation mark after the function name indicates the start

of the message to be printed.

 Next matching quotation mark (i.e., the next quotation mark of

the same kind as the opening mark) indicates the end of the

message to be printed.

 All PHP statements must end with a semicolon.

PHP Scripts

 PHP is case-insensitive when it comes to function names, so

ECHO, echo, eCHo, and so forth will all work.

 Scripts 1.2 and 1.3

 Standard HTML and PHP

Understanding White Space

 With PHP, you send data (like HTML tags and text) to the Web

browser, which, in turn, renders that data as a Web page.

 Often with PHP, you create the HTML source of a Web page.

 Three areas of notable white space (extra spaces, tabs, and

blank lines) in:

 your PHP scripts

 your HTML source

 the rendered Web page.

PHP Generally White Space Insensitive
 To make your scripts more legible, you can space out your code

anyway you want.

 The only white space in HTML that affects the rendered page is a
single space (multiple spaces get rendered as one).

 To alter the spacing in a rendered Web page, use HTML tags

 or <p></p> .

 To alter the spacing of the HTML source created with PHP, you
can

 Use echo or print over the course of several lines.

or

 Print the newline character (\n) within double quotation marks
(equivalent to Enter or Return).

Comments

 PHP comments aren’t sent to the Web browser at all.

 Won’t be viewable to the end user, even when looking at the

HTML source.

 PHP supports three comment syntaxes.

 Use pound symbol (#):

This is a comment.

 Use two slashes:

// This is also a comment.

 Both of these cause PHP to ignore everything that follows

until the end of the line.

Comments
 Can be used to place a comment on the same line as some PHP

code:

print 'Hello!'; // Say hello.

 A third style allows comments to run over multiple lines:

/* This is a longer comment

that spans two lines. */

 Script 1.4 comment.php ...

Variables
 Containers used to temporarily store values.

 Values can be numbers, text, or much more complex data.

PHP supports eight types of variables.

1. Boolean (TRUE or FALSE)

2. integer

3. floating point (decimals)

4. strings (characters);

5. arrays

6. objects

7. resources (which you’ll see when interacting with databases)

8. NULL (which is a special type that has no value).

Variable’s Name Must Start with a

Dollar Sign ($)
 Variable’s name can contain a combination of letters, numbers, and

underscore, for example:

$my_report1

 First character after the dollar sign must be either a letter or an
underscore (cannot be a number).

 Variable names in PHP are case-sensitive! ... means that $name and
$Name are different.

 To begin working with variables, this next script will print out the value
of three predefined variables.

 Whereas a standard variable is assigned a value during the execution of a
script, a predefined variable will already have a value when the script
begins its execution.

 Most of these predefined variables reflect properties of the server as a
whole, such as the operating system in use.

Variables
 First, variables can be assigned values using the equals sign

(=), also called the assignment operator.

 Second, to display the value of a variable, you can print the
variable without quotation marks:

print $some_var;

 Or variables can be printed within double quotation marks:

print "Hello, $name";

Variables and Quotation Marks
 You cannot print variables within single quotation marks:

Script 1.5 predefined.php

 A string is merely a quoted chunk of characters: letters, numbers,
spaces, punctuation, and so forth.

These are all strings:

 ‘Tobias’

 “In watermelon sugar”

 ‘100’

 ‘August 2, 2011’

 To make a string variable, assign a string value to a valid variable name:

$first_name = 'Tobias';

$today = 'August 2, 2011';

Strings

 When creating strings, you can use either single or double

quotation marks to encapsulate the characters, just as you

would when printing text.

 Likewise, you must use the same type of quotation mark for

the beginning and the end of the string.

 If that same mark appears within the string, it must be

escaped:

 $var = "Define \"platitude\", please.";

 Or you can also use the other quotation mark type:

 $var = 'Define "platitude", please.';

Script 1.6

 To print out the value of a string, use either echo or print:

echo $first_name;

 To print the value of string within a context, you must use

double quotation marks:

echo "Hello, $first_name";

 You’ve already worked with strings once—when using the

predefined variables in the preceding section.

 In Script 1.6, string variables are created and their values are

sent to the Web browser.

Concatenating Strings
 Concatenation is like addition for strings.

 Performed using the concatenation operator, which is the period
(.)

$city= 'Seattle';

$state = 'Washington';

$address = $city . $state;

 The $address variable now has the value Seattle Washington, which
almost achieves the desired result (Seattle, Washington). To
improve upon this, you could write

$address = $city . ' , ' . $state;

 so that a comma and a space are concatenated to the variables as
well.

Concatenation
 Because of how liberally PHP treats variables, concatenation is possible

with strings and numbers.

 Either of these statements will produce the same result (Seattle,
Washington 98101):

$address = $city . ' , ' . $state .,' 98101';

$address = $city . ' , ' . $state .,' ' . 98101;

 Let’s modify strings.php to use this new operator.

 Script 1.7 Concat.php

PHP Manual
 Lists every PHP function and feature. Accessible online at:

http://php.net/manual/en/index.php

 Organized with general concepts (installation, syntax, variables) first,
ends with the functions by topic (MySQL, string functions, and so on).

For each function, the manual indicates:

 Versions of PHP the function is available.

 How many and what types of arguments the function takes (optional
arguments are wrapped in square brackets).

 What type of value the function returns.

 Manual also contains a description of the function.

 Critically important that you know what version of PHP you’re running,
as functions and other particulars of PHP do change over time.

http://php.net/manual/en/index.php

Number Types

 PHP has both integer and floating-point (decimal) number

types.

 In my experience, though, these two types can be classified

under the generic title numbers without losing any valuable

distinction (for the most part).

 Valid number-type variables in PHP can be anything like

3.14

10980843985

4.2398508

Arithmetic Operators

 Along with the standard arithmetic operators you can use on

numbers (Table 1.1), there are dozens of functions built into

PHP

Number Formats
 Two common ones are round() and number_format().

 The former rounds a decimal to the nearest integer:

$n = 3.14;

$n = round ($n); // 3

 It can also round to a specified number of decimal places:

$n = 3.142857;

$n = round ($n, 3); // 3.143

 The number_format() function turns a number into the more
commonly written version, grouped into thousands using
commas:

$n = 20943;

$n = number_format ($n); // 20,943

Number Format
 This function can also set a specified number of decimal

points:

$n = 20943;

$n = number_format ($n, 2); //

20,943.00

 To practice with numbers, let’s write a mock-up script that
performs the calculations one might use in an e-commerce
shopping cart.

 Script 1.8 numbers.php

 The numbers.php script performs basic mathematical
calculations, like those used in an e-commerce application.

Constants
 Constants, like variables, are used to temporarily store a value, but

constants and variables differ in many ways.

 For starters, to create a constant, you use the define() function instead
of the assignment operator (=):

define ('NAME' value);

 Notice that, as a rule of thumb, constants are named using all capitals,
although this is not required.

 Constants do not use the initial dollar sign as variables do (because
constants are not variables).

 A constant can only be assigned a scalar value, like a string or a number:

define ('USERNAME' 'troutocity');

define ('PI' 3.14);

 Unlike variables, a constant’s value cannot be changed.

Constants
 To access a constant’s value, like when you want to print it, you

cannot put the constant within quotation marks:

echo "Hello, USERNAME"; // Won't work!

 With that code, PHP literally prints Hello, USERNAME A and not
the value of the USERNAME constant (because there’s no
indication that USERNAME is anything other than literal text).

 Instead, either print the constant by itself:

echo 'Hello, ';

echo USERNAME;

 or use the concatenation operator:

echo 'Hello, ' . USERNAME;

Predefined Constants

 PHP runs with several predefined constants, much like the

predefined variables used earlier in the chapter.

 These include PHP_VERSION (the version of PHP running)

and PHP_OS (the operating system of the server).

 This next script will print those two values, along with the

value of a user-defined constant.

 Script 1.9 Constant.php

Quotation Marks

 In PHP it’s important to understand how single quotation

marks differ from double quotation marks.

 With echo and print, or when assigning values to strings, you

can use either.

 But there is a key difference between the two types of

quotation marks and when you should use which.

 In PHP, values enclosed within single quotation marks will be

treated literally, whereas those within double quotation

marks will be interpreted.

Double Quotes

 In other words, placing

variables and special

characters (Table 1.2)

within double quotes will

result in their represented

values printed, not their

literal values.

Special Characters

 For example, assume that you have

$var = 'test';

 The code echo "var is equal to $var";

 Will print out var is equal to test, but the code echo 'var is

equal to $var';

 Will print out var is equal to $var.

 Using an escaped dollar sign, the code echo "\$var is equal

to $var"; will print out $var is equal to test, whereas the

code echo '\$var is equal to $var'; will print out \$var is

equal to $var A.

Double Quotes
 As these examples should illustrate, double quotation marks will

replace a variable’s name ($var) with its value (test) and a special

character’s code (\$) with its represented value ($).

 Single quotes will always display exactly what you type, except for

the escaped single quote (\') and the escaped backslash (\\),

which are printed as a single quotation mark and a single

backslash, respectively.

 As another example of how the two quotation marks differ, let’s

modify the numbers.php script as an experiment.

 Script 1.10 This, the final script in the chapter, demonstrates the

differences between using single and double quotation marks.

Questions???

