
Intro

Ed Crowley

PHP and MySQL

for Dynamic Web Sites

Class Preparation

 If you haven’t already, download the sample scripts from:

http://www.larryullman.com/books/php-

and-mysql-for-dynamic-web-sites-

visual-quickpro-guide-4th-

edition/#downloads

 Unzip sample scripts on local computer…

 Log into your hostgator account…

http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/
http://www.larryullman.com/books/php-and-mysql-for-dynamic-web-sites-visual-quickpro-guide-4th-edition/

Dynamic Web Sites Overview
 In many cases, can be described as applications rather than

sites.

 Can respond to different parameters (time of day, version of the
visitor’s Web browser)

 Have a “memory,” allowing for user registration and login, e-
commerce, and similar ...

 Almost always integrate HTML forms, allowing visitors to
perform searches, provide feedback...

 Often have interfaces where administrators can manage site’s
content.

 Easier to maintain, upgrade, and build upon than static sites.

 Don’t always rely on a database, though many do.

PHP Well Suited for Web Development

 Now, means “PHP: Hypertext Preprocessor.”

 Originally stood for “Personal Home Page.”

 PHP a “widely used general-purpose scripting language.

 Can be embedded into HTML.

 PHP is a scripting as opposed to a compiled language.

 Designed to write Web scripts, not stand-alone applications

(though that is possible).

 PHP runs on many operating systems, including:

 Windows

 Unix (and its many variants)

 Mac

 Tight integration with many databases

 Stable and portable

 Open source (no cost)

 Easier to learn than most alternatives.

PHP Server-side and Cross-Platform

Server-Side

 PHP hosted on a server.

 Server sends Web pages to requesting visitors (you, the

client, with your Web browser).

 When a visitor goes to a Web site written in PHP, the server

reads the PHP code, then processes it.

Server-side Technology of Choice.

 PHP code tells the server to send the appropriate data—

HTML code—to the Web browser, which treats the received

code as it would a standard HTML page.

 To the end user and the Web browser there is no perceptible

difference between what home.html and home.php may look

like

 But how that page’s content was created will be significantly

different.

MySQL world’s most popular open-

source database
 .

 By incorporating a database into a Web application, some of

the data generated by PHP can be retrieved from MySQL .

 Further moves a site’s content from static (hard-coded) to

dynamic .

MySQL Open-Source

Consists of several components

 MySQL server (mysqld which runs and manages the

databases)

 MySQL client (mysql, which gives you an interface to the

server)

 Utilities, such as PHPMyAdmin

Understanding Encoding
 The encoding you use in a file dictates what characters can be

represented.

 Some applications let you set the encoding in the preferences or
options area; others set the encoding when you save the file.

 To indicate the encoding to the Web browser, there’s the
corresponding meta tag:

<!DOCTYPE html>

<meta charset="UTF-8">

Note: New shorter HTML 5 encoding meta tag.

 charset=utf-8 says that UTF-8 encoding is being used

 8-bit Unicode Transformation Format.

Chapter One Goals

At the end of this unit, you will be able to:

 Create a basic PHP script

 Execute a PHP script

 Send data to a Web browser

 Write comments in PHP

 Demonstrate how to use variables

 Work with string variables, including concatenation and a

few string functions

Goals Two

At the end of this unit, you will be able to:

 Work with numeric variables, including arithmetic and

formatting

 Work with constants

 Know how PHP treats the two quotation mark types

differently

 Recognize common escape sequences

 Implement some basic debugging techniques

PHP Tags <?php ... ?>
 Anything written within these tags will be treated by the Web

server as PHP, meaning the PHP interpreter will process the
code.

 Any text outside of the PHP tags is immediately sent to the
Web browser as regular HTML.

 Because PHP is most often used to create content displayed in
the Web browser, the PHP tags are normally put somewhere
within the page’s body.

 Lets make a php page…

<php

phpinfo();

?>

.php File Type

 PHP files must have a proper extension.

 The extension tells the server to treat the script as a PHP

page.

 Use .html for standard HTML pages and .php for PHP files.

PHP Attributes

 PHP has built-in functions to send data to the Web browser.

 Most common: echo and print.

 Single or double quotation marks can be used.

 There is a distinction between the two.

 First quotation mark after the function name indicates the start

of the message to be printed.

 Next matching quotation mark (i.e., the next quotation mark of

the same kind as the opening mark) indicates the end of the

message to be printed.

 All PHP statements must end with a semicolon.

PHP Scripts

 PHP is case-insensitive when it comes to function names, so

ECHO, echo, eCHo, and so forth will all work.

 Scripts 1.2 and 1.3

 Standard HTML and PHP

Understanding White Space

 With PHP, you send data (like HTML tags and text) to the Web

browser, which, in turn, renders that data as a Web page.

 Often with PHP, you create the HTML source of a Web page.

 Three areas of notable white space (extra spaces, tabs, and

blank lines) in:

 your PHP scripts

 your HTML source

 the rendered Web page.

PHP Generally White Space Insensitive
 To make your scripts more legible, you can space out your code

anyway you want.

 The only white space in HTML that affects the rendered page is a
single space (multiple spaces get rendered as one).

 To alter the spacing in a rendered Web page, use HTML tags

 or <p></p> .

 To alter the spacing of the HTML source created with PHP, you
can

 Use echo or print over the course of several lines.

or

 Print the newline character (\n) within double quotation marks
(equivalent to Enter or Return).

Comments

 PHP comments aren’t sent to the Web browser at all.

 Won’t be viewable to the end user, even when looking at the

HTML source.

 PHP supports three comment syntaxes.

 Use pound symbol (#):

This is a comment.

 Use two slashes:

// This is also a comment.

 Both of these cause PHP to ignore everything that follows

until the end of the line.

Comments
 Can be used to place a comment on the same line as some PHP

code:

print 'Hello!'; // Say hello.

 A third style allows comments to run over multiple lines:

/* This is a longer comment

that spans two lines. */

 Script 1.4 comment.php ...

Variables
 Containers used to temporarily store values.

 Values can be numbers, text, or much more complex data.

PHP supports eight types of variables.

1. Boolean (TRUE or FALSE)

2. integer

3. floating point (decimals)

4. strings (characters);

5. arrays

6. objects

7. resources (which you’ll see when interacting with databases)

8. NULL (which is a special type that has no value).

Variable’s Name Must Start with a

Dollar Sign ($)
 Variable’s name can contain a combination of letters, numbers, and

underscore, for example:

$my_report1

 First character after the dollar sign must be either a letter or an
underscore (cannot be a number).

 Variable names in PHP are case-sensitive! ... means that $name and
$Name are different.

 To begin working with variables, this next script will print out the value
of three predefined variables.

 Whereas a standard variable is assigned a value during the execution of a
script, a predefined variable will already have a value when the script
begins its execution.

 Most of these predefined variables reflect properties of the server as a
whole, such as the operating system in use.

Variables
 First, variables can be assigned values using the equals sign

(=), also called the assignment operator.

 Second, to display the value of a variable, you can print the
variable without quotation marks:

print $some_var;

 Or variables can be printed within double quotation marks:

print "Hello, $name";

Variables and Quotation Marks
 You cannot print variables within single quotation marks:

Script 1.5 predefined.php

 A string is merely a quoted chunk of characters: letters, numbers,
spaces, punctuation, and so forth.

These are all strings:

 ‘Tobias’

 “In watermelon sugar”

 ‘100’

 ‘August 2, 2011’

 To make a string variable, assign a string value to a valid variable name:

$first_name = 'Tobias';

$today = 'August 2, 2011';

Strings

 When creating strings, you can use either single or double

quotation marks to encapsulate the characters, just as you

would when printing text.

 Likewise, you must use the same type of quotation mark for

the beginning and the end of the string.

 If that same mark appears within the string, it must be

escaped:

 $var = "Define \"platitude\", please.";

 Or you can also use the other quotation mark type:

 $var = 'Define "platitude", please.';

Script 1.6

 To print out the value of a string, use either echo or print:

echo $first_name;

 To print the value of string within a context, you must use

double quotation marks:

echo "Hello, $first_name";

 You’ve already worked with strings once—when using the

predefined variables in the preceding section.

 In Script 1.6, string variables are created and their values are

sent to the Web browser.

Concatenating Strings
 Concatenation is like addition for strings.

 Performed using the concatenation operator, which is the period
(.)

$city= 'Seattle';

$state = 'Washington';

$address = $city . $state;

 The $address variable now has the value Seattle Washington, which
almost achieves the desired result (Seattle, Washington). To
improve upon this, you could write

$address = $city . ' , ' . $state;

 so that a comma and a space are concatenated to the variables as
well.

Concatenation
 Because of how liberally PHP treats variables, concatenation is possible

with strings and numbers.

 Either of these statements will produce the same result (Seattle,
Washington 98101):

$address = $city . ' , ' . $state .,' 98101';

$address = $city . ' , ' . $state .,' ' . 98101;

 Let’s modify strings.php to use this new operator.

 Script 1.7 Concat.php

PHP Manual
 Lists every PHP function and feature. Accessible online at:

http://php.net/manual/en/index.php

 Organized with general concepts (installation, syntax, variables) first,
ends with the functions by topic (MySQL, string functions, and so on).

For each function, the manual indicates:

 Versions of PHP the function is available.

 How many and what types of arguments the function takes (optional
arguments are wrapped in square brackets).

 What type of value the function returns.

 Manual also contains a description of the function.

 Critically important that you know what version of PHP you’re running,
as functions and other particulars of PHP do change over time.

http://php.net/manual/en/index.php

Number Types

 PHP has both integer and floating-point (decimal) number

types.

 In my experience, though, these two types can be classified

under the generic title numbers without losing any valuable

distinction (for the most part).

 Valid number-type variables in PHP can be anything like

3.14

10980843985

4.2398508

Arithmetic Operators

 Along with the standard arithmetic operators you can use on

numbers (Table 1.1), there are dozens of functions built into

PHP

Number Formats
 Two common ones are round() and number_format().

 The former rounds a decimal to the nearest integer:

$n = 3.14;

$n = round ($n); // 3

 It can also round to a specified number of decimal places:

$n = 3.142857;

$n = round ($n, 3); // 3.143

 The number_format() function turns a number into the more
commonly written version, grouped into thousands using
commas:

$n = 20943;

$n = number_format ($n); // 20,943

Number Format
 This function can also set a specified number of decimal

points:

$n = 20943;

$n = number_format ($n, 2); //

20,943.00

 To practice with numbers, let’s write a mock-up script that
performs the calculations one might use in an e-commerce
shopping cart.

 Script 1.8 numbers.php

 The numbers.php script performs basic mathematical
calculations, like those used in an e-commerce application.

Constants
 Constants, like variables, are used to temporarily store a value, but

constants and variables differ in many ways.

 For starters, to create a constant, you use the define() function instead
of the assignment operator (=):

define ('NAME' value);

 Notice that, as a rule of thumb, constants are named using all capitals,
although this is not required.

 Constants do not use the initial dollar sign as variables do (because
constants are not variables).

 A constant can only be assigned a scalar value, like a string or a number:

define ('USERNAME' 'troutocity');

define ('PI' 3.14);

 Unlike variables, a constant’s value cannot be changed.

Constants
 To access a constant’s value, like when you want to print it, you

cannot put the constant within quotation marks:

echo "Hello, USERNAME"; // Won't work!

 With that code, PHP literally prints Hello, USERNAME A and not
the value of the USERNAME constant (because there’s no
indication that USERNAME is anything other than literal text).

 Instead, either print the constant by itself:

echo 'Hello, ';

echo USERNAME;

 or use the concatenation operator:

echo 'Hello, ' . USERNAME;

Predefined Constants

 PHP runs with several predefined constants, much like the

predefined variables used earlier in the chapter.

 These include PHP_VERSION (the version of PHP running)

and PHP_OS (the operating system of the server).

 This next script will print those two values, along with the

value of a user-defined constant.

 Script 1.9 Constant.php

Quotation Marks

 In PHP it’s important to understand how single quotation

marks differ from double quotation marks.

 With echo and print, or when assigning values to strings, you

can use either.

 But there is a key difference between the two types of

quotation marks and when you should use which.

 In PHP, values enclosed within single quotation marks will be

treated literally, whereas those within double quotation

marks will be interpreted.

Double Quotes

 In other words, placing

variables and special

characters (Table 1.2)

within double quotes will

result in their represented

values printed, not their

literal values.

Special Characters

 For example, assume that you have

$var = 'test';

 The code echo "var is equal to $var";

 Will print out var is equal to test, but the code echo 'var is

equal to $var';

 Will print out var is equal to $var.

 Using an escaped dollar sign, the code echo "\$var is equal

to $var"; will print out $var is equal to test, whereas the

code echo '\$var is equal to $var'; will print out \$var is

equal to $var A.

Double Quotes
 As these examples should illustrate, double quotation marks will

replace a variable’s name ($var) with its value (test) and a special

character’s code (\$) with its represented value ($).

 Single quotes will always display exactly what you type, except for

the escaped single quote (\') and the escaped backslash (\\),

which are printed as a single quotation mark and a single

backslash, respectively.

 As another example of how the two quotation marks differ, let’s

modify the numbers.php script as an experiment.

 Script 1.10 This, the final script in the chapter, demonstrates the

differences between using single and double quotation marks.

Questions???

