Programming with PHP

Ch2
Ed Crowley

Goals

At the end of this Chapter, you will be able to:

® Gather information with an HTML form.

* Use PHP to handle input from a form.

® Use conditionals and the remaining PHP operators...

® Employ concatenation, and mathematical operators, arrays, and

loops.
Actions

® If you haven’t already, download the complete set of textbook

scripts and SQL commands from:

° Log into your Hostgator account.

http://www.larryullman.com/downloads/phpmysql4_scripts.zip

HTML Forms

® In any dynamic Web site, handling an HTML form with PHP

is arguably the most important process.
Two steps:
1. Create HTML form

2. Create corresponding PHP script to receive and process

data from that form.

Lanaing Fage

JavaSoipt code » PHP form handler
| |

POST

HTML Fom

HTML Forms

e HTML forms are created using form tags and various input
elements.

<form action="script.php" method="post">
Input elements here..
</form>

* Important form tag attribute is action

® Dictates where form data is sent.
e Method attribute most frequently will be post.

* ... different inputs—be they text boxes, radio buttons, select
menus, check boxes, etc.—are placed within the opening and
closing form tags.

¢ Remember names given to form inputs. ..

Script 2.1 Form.html

* To say that this script will be handling the form means that
the PHP page will do something with the data it receives.

® For now, our scripts will simply print the data back to the Web
browser.

® In a few weeks, we will be storing the input in a database.

® PHP scripts store the received information in special
variables.

e For example:

<p><label>Name: <input type="text"
name="name" size="20" maxlength="40"
/></label></p>

Forms

® For example, say you have a form input like so:

<input type="text" name="city" />

e Whatever the user types into that input will be accessible via

a PHP variable named:

$ REQUEST['

city'].

® PHP is case-sensitive when it comes to variable names, so

S REQUEST
$ Request
S REQUEST

fcity!']
fcity!':

'City"’

will work, but
and

will have no value.

Script 2.2 Handle_form.php

* Next example will be a PHP script that handles the already—
created HTML form from Script 2.1.

* Script will assign the form data to new variables.
® The script will then print the received values.

® Script 2.2 receives and prints out the information entered into an

HTML form (Script 2.1).
// Create a shorthand for the form data:
Sname = $ REQUEST['name'];
Scomments = $ REQUEST['comments'];
*/// Print the submitted information:

echo "<p>Thank you, Sname, for the
following comments:
<tt>Scomments</tt></p>

PHP’s Three Primary Terms for Creating
Conditionals

1) if

2) else

3) elseif (can also be written as two words, else
1£)

* Every conditional begins with an if clause:
1f (condition) {

// Do something!

}

® An if can also have an else clause:

1f (condition) {

// Do something!

} else {

// Do something else!

}

elseif

® An elseif clause allows you to add more conditions:
1f (conditionl) {

// Do something!

} elseif (conditionZ?) {

// Do something else!

} else {

// Do something different!

}

* If a condition is true, the code in the following curly braces ({ }) will
be executed.

e Ifnot, PHP continues on.

® [f there is a second condition (after an elseif), that will be checked.

elseif

® You can use as many elseif clauses as you want—until PHP
hits an else, which will be automatically executed at that

point, or until the conditional terminates without an else.

® Jt’s important that the else always come last and be treated as
the default action unless specific criteria—the conditions—

are met. For example:

SX > Sy

True

® A condition can be true in PHP for any number of reasons.

* For example, these are true conditions:

® $var, if $var has a value other than 0, an empty string FALSE, or
NULL

® isset($var), if $var has any value other than NULL, including O,
FALSE, or an empty string

TABLE 2.2 Comparative and Logical Operators

Symbol

AND

OR
XOR

Meaning
is equal to

15 Not
equal to

less than

greater
than

less than
or equal to

greater
than or
equal to

not
and
and
or
or

and not

Tvpe
comparison

comparison

comparison

comparison

comparison

comparison

logical
logical
logical
logical
logical

logical

Example
$}(== $}{
$x 1= $y

$x < By
$x > By

$x <= By

$x >= $y

1$x

$x && $y
$x and %y
$x || %y
$x or %y
$x XOR %y

To establish a True, or
a False, condition, you
can also use the
comparative and
logical operators
(Table 2.2) in
conjunction with
parentheses to make
more complicated
eXpressions.

Script 2.3 handle_form.php Remade

® Two conditionals used to validate the gender radio buttons.
* Data submitted via HTML form should always be considered untrustworthy.
// Print a message based upon the gender wvalue:
if (Sgender == 'M') {
echo '<p>Good day, Sir!</p>';
}
elseif (Sgender == 'F') {
echo '<p>Good day, Madam!</p>"';
} else {
// No gender selected

echo '<p>You forgot to enter your
gender!</p>"';

Validating Form Data

° Validating form data requires the use of conditionals and any

number of functions, operators, and expressions.

® One standard function to be used is isset(), which tests if a

variable has a value (including O, FALSE, or an empty string,
but not NULL).

o Preceding script was an example.

Empty()

® One issue with the isset() function is that an empty string
tests as true, meaning that isset() is not an effective way to

validate text inputs and text boxes from an HTML form.

® To check that a user typed something into textual elements,

you can use the empty() function.

® It checks if a variable has an empty value: an empty string, O,
NULL, or FALSE.

Form Validation Goals

e First goal of form validation is seeing if something was

entered or selected in form elements.

® Second goal is to ensure that submitted data is of the right
type (numeric, string, etc.), of the right format (like an email
address), or a specific acceptable value (like $gender being

equal to either M or F).

® Let’s create a new handle_form.php to make sure variables

have values before they’re referenced.

Script 2.4 Validating Form Data

° Validating HTML form data before you use it is critical to
Web security and achieving professional results.

® Here, conditionals check that every referenced form element
has a value.

// Validate the name:if
('empty ($ REQUEST['name'])) {
Sname = $ REQUEST]['name'];

} else {

Sname = NULL;

echo '<p class="error">You forgot to
enter your name!</p>"';}

Arrays

® Unlike strings and numbers, an array can hold multiple,
separate pieces of information.

® An array is like a list of values, each value being a string or a
number or even another array.

® Arrays are structured as a series of key-value pairs, where
one pair is an item or element of that array.

® For each item in the list, there is a key (or index) associated

with it (Table 2.3).
PHP supports two kinds of arrays:
I. indexed, use numbers as the keys (as inTable 2.3)

2. associative, use strings as keys (Table 2.4).

Arrays: Indexed and Associative

TABLE 2.3 Array Example 1: $artists TABLE 2.4 Array Example 2: $states
Key Value Key Value

0 The Mynabirds MD Maryland

1 Jeremy Messersmith PA Pennsylvania

2 The Shins IL lllinois

3 Ironand Wine MO Missour

4 Alexi Murdoch | A lowa

Arrays

® Indexed arrays begin with the first index at O.
e Unless you specify keys explicitly.
® An array follows the same naming rules as any other variable.

® Means that you might not be able to tell that $var is an array as
opposed to a string or number.

® To refer to a specific value in an array, start with the array variable
name, followed by the key within square brackets:

Sband = Sartists[0]; // The Mynabirds
echo $states['MD']; // Maryland

® You can see that the array keys are used like other values in PHP:
numbers (e.g., 0) are never quoted, whereas strings (MD) must

be.

Array Syntax

® Because arrays use a different syntax than other variables, and can

contain multiple values, printing them can be trickier.

® This will not work:

echo "My list of states: S$states";

* However, printing an individual element’s value is simple if it

uses indexed (numeric) keys:

echo "The first artist is Sartists[0].";

® But if the array uses strings for the keys, the quotes used to
surround the key will muddle the syntax.

Array Names

® The following code will cause a parse error:

echo "IL is Sstates['IL]."; // BAD!

® To fix this, wrap the array name and key in curly braces when

an array uses strings for its keys:

echo "IL is {Sstates['IL']}.";

Script 2.5 -- handle_form v4

® You've already worked with two arrays: $_SERVER (in
Chapter 1) and $_REQUEST (in this chapter).

* 'To acquaint you with another array and to practice printing
array values directly, one final, but basic, version of the
handle_form.php page will be created using the more
Specific $_POST array.

® The superglobal variables, like §_POST here, are just one
type of PHP array.

Superglobal Arrays

* PHP includes several predefined arrays called the superglobal

variables. They are:

$ GET, $ POST, $ REQUEST, $ SERVER,
$ ENV, $ SESSION, and $ COOKIE.

e $§ GET variable is where PHP stores all of the values sent to a
PHP script via the GET method.

® $_POST stores all of the data sent to a PHP script from an HTML
form that uses the POST method.

* Both of these—along with §_COOKIE—are subsets of
$_REQUEST, which you’ve been using,

* $_SERVER, which was used in Chapter 1, stores information
about the server PHP is running on, as does $_ENV. §_SESSION.

Creating arrays

° Frequently there will be times when you want to create your

own array.

e Two primary ways to define an array.

® First, add an element at a time to build one:

Sband][]
Sband[]
Sband[]

"'Jemaine';
'Bret';

'Murray';

® As arrays are indexed starting at 0, $band[0] has a value of
Jemaine; $band[1], Bret, and $band[2], Murray.

Associative Arrays

* Alternatively, specity the key when adding an element.
® Butit’s important to understand that it you specify a key and

a value already exists indexed with that same key, the new

value will overwrite the existing one:

Sband['fan'] = "Mel';
Sband['fan'] = 'Dave'; // New value
Sfruit[2] = 'apple';

Sfruit[2] = 'orange'; // New value

Array() function

® You can use the array() function to build an entire array in one
step:

Sstates = array ('IA' => 'Iowa' ,'MD' =>
'Maryland') ;

® The array() function can be used whether or not you explicitly set
the key:

$artists = array ('Clem Snide', 'Shins'
'Eels');

® Or, it you set the first numeric key value, the added values will be
keyed incrementally thereafter:

Sdays = array (1 => 'Sun' 'Mon',0, 'Tue');

echo S$Sdays([3]; // Tue

array() function

® The array() function is also used to initialize an array, prior

to referencing it:
Stv = array();
stv[] = 'Flight of the Conchords';

Accessing Entire Arrays

* To access every array element, use the foreach loop:
foreach (Sarray as S$value) {

// Do something with $value.

}

® The foreach loop will iterate through every element in $array,
assigning each element’s value to the $value variable.

® To access both the keys and values, use:
foreach (Sarray as S$key => Svalue) {
echo "The value at Skey is S$value.";

J

® (You can use any valid variable name in place of $key and $value,

like just $k and $v.)

Script 2.6

* Using arrays, this next script will demonstrate how easy it is to make a

set of form pull-down menus for selecting a date
® This form uses arrays to dynamically create three pull-down menus.

// Make the days pull-down menu:
echo '<select name="day">';
foreach (Sdays as $value) {
echo "<option value=\"Svalue\">Svalue</option>\n";

}
echo '</select>';

Multidimensional arrays

® Multidimensional arrays remarkably easy to work with.
® Asan example, start with an array of prime numbers:
Sprimes = array(2, 3, 5, 7, ...);

® Then create an array of sphenic numbers (don’t worry: I had no
idea what a sphenic number was either; I had to look it up):

Ssphenic = array (30, 42, 66, 70, ...);

® These two arrays could be combined into one multidimensional
array like so:

Snumbers = array ('Primes' => S$primes,
'Sphenic' => S$sphenic);

* Now, $numbers is a multidimensional array.

Accessing Multidimension Arrays

® To access the prime numbers sub-array, refer to
$numbers['Primes'].

* To access the prime number 5, use $numbers['Primes'][2]
(it’s the third element in the array, but the array starts
indexing at 0).

* To print out one of these values, surround the whole
construct in curly braces:

echo "The first sphenic number 1s
{Snumbers['Sphenic'] [0]}.";

® Of course, you can also access multi-dimensional arrays using
the foreach loop, nesting one inside another if necessary.

Script 2.7 Multi.php

e Multidimensional arrays are created by using other arrays for its values.

® Two foreach loops, one nested inside of the other, can access every array
element.

// Loop through the countries:

foreach (Sn america as Scountry => $list) {
// Print a heading:
echo "<h2>S$country</h2>";

// Print each state, province, or
territory:

foreach ($list as $k => Sv) |
echo "<1i>Sk - Sv</1li>\n";
}
// Close the list:
echo '"';
} // End of main FOREACH.

-

Sorting Arrays

® PHP includes several functions you can use for sorting arrays:
Snames = array ('Moe' 'Larry',, 'Curly');
sort (Snames) ;

The sorting functions perform three kinds of sorts.

* First, you can sort an array by value, discarding the original keys,
using sort().

® It’s important to understand that the array’s keys will be reset after

the sorting process, so if the key-value relationship is important, you
should not use sort().

® Second, you can sort an array by value while maintaining the keys,
using asort().

® Third, you can sort an array by key, using ksort().

Script 2.8

® Each of these can sort in reverse order if you change them to

rsort(), arsort(), and krsort() respectively.

* To demonstrate the effect sorting arrays will have, this next
script will create an array of movie titles and ratings (how
much I liked them on a scale of 1 to 10) and then display this

list in different ways.

® In Script 2.8, an array is defined, then sorted in two different

ways: first by key, then by value (in reverse order).

Exit loop
once
condition is
FALSE

-
do this if
TRUE

While Loop

while loop looks like this:

while (condition) {

// Do something.

J

As long as the condition part of the loop
is true, the loop will be executed.

Once it becomes false, the loop is

stopped

If the condition is never true, the loop
will never be executed.

while loop most frequently used when
retrieving results from a database, .”

For loop

® A more complicated syntax:

for (1nitial expression; condition;
closing expression) {

// Do something.

}

* Upon first executing the loop, the initial expression is run.

® Then the condition is checked and, if true, the contents of

the loop are executed.

* After execution, the closing expression is run and the

condition is checked again.

® Process continues until the condition is false

™~

For

{ For Loop Example

initial
expression

for (S$i = 1; $i <= 10; $i++)
{ echo $i;}

¢ First time this loop is run, the $i variable is

set to the value of 1.

after

| ? Then condition is checked (is 1 less than or
expression

equal to 107).

do this if
TRUE

v ? Then, $iis incremented to 2 ($§i+ +), the

Exit loop
once
condition is
FALSE

¢ Since this is true, 1 is printed out (echo §i).

condition is checked, and so forth.

? Result will be numbers 1 through 10 printed

out.

t)

Script 2.9

The functionality of both loops is similar enough that for and
while can often be used interchangeably.

Still, for loop is a better choice for doing something a known
number of times. ..

whereas while is used when a condition will be true an unknown
number of times.

In this chapter’s last example, the calendar script created earlier
will be rewritten using for loops in place of two of the foreach
loops.

Loops often used in conjunction with or in lieu of an array. Here,
two for loops replace the arrays and foreach loops used in the
script previously.

Questions???

